Layer 2 Solutions: Taking Scalability to New Heights

In this article we will explore the concept behind Layer 2 Solutions and the problems they are solving in blockchain.


According to the CAP theorem (also known as Brewer's theorem) first proposed in 1998 by Eric Brewer before Seth Gilbert and Nancy Lynch propounded it in 2002, a distributed system cannot attain consistency, availability, and partition tolerance simultaneously. This same opinion holds sway among blockchain experts for blockchain protocols. The belief often referred to as blockchain trilemma suggests that blockchain cannot achieve three of its core principles: security, scalability, and decentralization simultaneously.

By implication, the blockchain trilemma said, a protocol can achieve decentralization and security while sacrificing scalability and vice versa. The blockchain trilemma provided an answer to why centralized networks can boast thousands of transactions per second and the blockchain networks like bitcoin and Ethereum can only afford a few tens of transactions per second. In that light, the trading system sacrifices decentralization while achieving high throughput, secure and scalable network. To scale up blockchain protocols, developers began looking to salvage the situation.

So far, to solve the trilemma belief, several approaches are taken. The proposed solutions to achieving scalability are Layer 2 and Layer 1 solutions respectively.

Layer-1 and Layer-2 Solutions

Although this article focuses on Layer 2 solutions, it will be necessary to lay a background that includes Layer 1 solutions. It will highlight several Layer 1 and Layer 2 solutions as well as references to top Layer 2 implementations you should know about.

Layer-1 Solutions

Often referred to as on-chain solutions, Layer-1 solutions are the scalability solutions that require redesigning the underlying protocols of the base protocol. Look at the Layer-1 solution as say, redesigning Ethereum or Bitcoin protocols to increase throughput and reduce fees. For instance, Visa, MasterCard, and other payment processors process an average transaction per second of 5000 while Bitcoin and Ethereum process 4 and 15, respectively. Going by the current design of these blockchain networks, as users of the networks grow, the TPS will keep reducing and transactions keep getting unnecessarily slow, hence, the need for a redesign. The Layer-1 solution entails redesigning the underlying protocols of the networks to allow for throughput, energy efficiency, and cheaper transaction fees. 

There are thus several methodologies employed to redesign the base protocols. Although some of them are still at their experimental stage, they include: 

Consensus-Based Protocol Redesign

This consists of redesigning the consensus protocol of the base protocol to scale transactions and efficiency. The leading blockchain networks like Bitcoin and Ethereum have leveraged PoW consensus that allows miners to solve cryptographic puzzles to validate and verify blocks thereby making it energy-demanding and tedious. Nonetheless, PoW systems are secured but often characterized by high transaction fees and low throughput when there is network congestion. To mitigate this risk and achieve a scalable network, PoS consensus becomes a good choice. Instead of miners solving cryptographic puzzles using enormous energy, users stake coins on the blockchain.

PoS consensus is set to cut down the high cost of transaction and throughput of the PoW networks. It is yet in its experimental stage, but some protocols are already developing on it. Among the top projects are Solana, Avalanche, and Ethereum. Ethereum termed its proposed PoS version Ethereum 2.0. From a frontier phase, Ethereum will be going full serenity next year by launching a Proof-of-Stake (PoS) consensus algorithm. Unlike the high cost of transaction and low TPS of Ethereum 1.0, Ethereum 2.0 is expected to dramatically and fundamentally increase the capacity of the Ethereum network while increasing decentralization and preserving network security.


Also in an experimental stage, sharding is adapted from distributed databases as one of the Layer-1 scaling solutions. Employing a Sharding Layer-1 scaling solution means breaking the state of the base protocol into distinct datasets called "shards". Here, tasks are managed by shards, simultaneously processed in parallel and they collectively maintain the entire network.

Each node in a network represents a shard instead of maintaining a copy of the entire main chain to allow scalability. Each shard across the network provides proofs to the mainchain and interacts with one another to share addresses, balances, and general states using cross-shard communication protocols. Although in an experimental stage, awaiting its launch in 2022, Ethereum 2.0 is exploring the implementations of shards.

Layer-2 Solutions

Instead of implementing the changes of the parent protocols of the blockchain, Layer-2 solutions took scalability to a whole new height. Layer-2 solutions are those scalability solutions that entail adding a layer to the base protocol to increase throughput. They take transactions off the main chain, hence, are called off-chain solutions. 

The off-chain solution doesn't allow base protocol structural changes since the second layer is added as an extra layer. For that reason, Layer-2 scaling solutions have the potential to achieve high throughput without sacrificing network security.

Layer-2 solutions consist of smart contracts built on top of the main blockchain. Those secondary layers are for scaling payments and off-chain computation. Layer-2 solutions can be achieved in various ways. For example;


Rollups are one of the Layer-2 scaling solutions built on the Ethereum blockchain. Unlike the Layer-1 solutions, they are secondary layers that allow users to perform transactions off the main Ethereum chain (Layer-1). It is designed to post transactional data on Layer-1 thereafter, hence, inheriting the security of the base protocol. Rollups possess the following properties:

  1.  Executes transaction outside Layer-1.
  2. Proofs transactions on Layer-1, thereby improving the security of Layer-2.  
  3. Using the transactional data on Layer-1, rollup smart contract in Layer 2 enforces correct transaction execution on it. 
  4. Operators stake a bond on the Rollups smart contract which they get incentivized to verify and execute transactions correctly. 

Rollups can either be zero-knowledge or optimistic Rollups. They both differ in their security model:

Optimistic Rollups

Optimistic rollups is a Layer 2 solution designed to enable autonomous smart contracts using the Optimistic Virtual Machine. By default it doesn't perform any computation, hence, can offer up to 10-100x improvements in scalability depending on the transaction. It sits parallel to the main Ethereum chain on Layer-2. Transactions on Optimistic rollups are written on the main Ethereum chain in form of call data thereby further reducing the gas cost. 

As stated ab initio, Optimistic rollups do compute transactions outside of the main layer in the form of batches and submit only the root hash of the block to the main chain. Hence, the need for a mechanism (fraud proofs) to ensure transactions are legitimate That way, when someone notices a fraudulent transaction, the rollups initiate fraud proofs before running a transactional computation using available state data. By implication, Optimistic rollups take significantly longer to confirm transactions than zero knowledge rollups. 

There are currently multiple implementations of Optimistic rollups that you can integrate into your dApps. They include; OptimismOff-chain Labs Arbitrum RollupFuel NetworkCartesiOMGX

Zero-Knowledge Rollups

This is a type of rollup on the ethereum blockchain. It bundles hundreds of transactions off-chain and generates a cryptographic proof known as Succinct Non-Interactive Argument of Knowledge (SNARK), often called validity proof.

The ZK-rollup smart contract maintains and updates the state of all transfers on Layer 2 with validity proof. Instead of the entire transactional data, the ZK Rollups needs only the validity proof, which goes on to simplify transactions on the network. Validating a block is quicker and cheaper in ZK Rollups because less data is included.

There are multiple implementations of ZK-rollups that you can integrate into your dApps. They include; LoopringStarkwareMatter Labs zkSynczkTubeAztec 2.0, and so on. 


A State Channel is a Layer-2 scaling solution that facilitates two-way communication between the participants which will allow them to perform transactions off the main blockchain. Typically, for a recurring payment State Channel does not require a recurring validation by nodes of the Layer-1 network to improve overall transaction capacity and speed. The underlying blockchain is sealed off via a set of smart contracts or multi-signature seals off. Leveraging the smart contract pre-defined by participants, they can directly interact with each other without the need of the miners. Upon the completion of the transaction or batch of transactions on a state channel, the final “state” of the “channel” and all its inherent transitions are recorded to the underlying blockchain. Some projects including Liquid Network, Celer, Bitcoin Lightning, and Ethereum's Raiden Network are currently deploying state channels scaling solutions.


A Sidechain is a secondary blockchain linked to the main blockchain via a two-way peg. Like most layer 2 scaling solutions, it uses an independent consensus and contracts to optimize throughput. On the sidechain, the main chain takes up security roles, confirming batched transaction records and resolving disputes.  

They are somewhat similar to channels, however, it differs in how they process transactions and the security impacts. Transactions are recorded publicly on the ledger, unlike the private records of the channels. Sidechains enable tokens and other digital assets to move back and forth freely from the main chain. When the sidechain completes a transaction, a confirmation is relayed across the chains, followed by a waiting period for added security. Due to their allowance to move assets around freely on the new network, a user who wants to send the coins/assets back to the main chain can do that by simply reversing the process.


Plasma is a secondary chain on the Ethereum blockchain, proposed by Joseph Poon and Vitalik Buterin in their paper Plasma: Scalable Autonomous Smart Contracts. It comprises Merkel trees and smart contracts which create unlimited smaller versions of the main chain (Ethereum), called child chains. Integrating these child chains enables fast and cheap transactions off the main Ethereum blockchain into child chains.

Users can deposit and withdraw plasma chain funds, enabled by fraud proofs. For such a transaction to go on, there has to be communication between the child chains and the root chain, secured by the fraud proofs. Users deposit by sending the asset on the smart contract, managed by the plasma chain. Then the plasma chain proceeds to assign a unique ID to the deposited assets while the operator generates a batch of plasma transactions received off-chain at intervals. On the other hand, the contract initiates a challenging period during which anyone can use the Merkle branches to invalidate withdrawals if they can. 


Like the CAP theorem in distributed systems, the blockchain trilemma suggests that blockchain cannot achieve scalability, security, and decentralization simultaneously. However, the Layer-2 scaling solutions have come to challenge the thought system. It allows the mainchain to take care of security while maintaining scalable networks in its additional layers.

Also Read Arbitrum: Scaling without Compromise

Metaverse: A Fusion of Virtual and Actual World

One who is familiar with digital terms will not be new to the term "Metaverse". Metaverse create physical realities in a virtual world.

Just as there are entertainment Metaverses, there are art, social and medical Metaverses as well.

In fact, several games are built on the concept of Metaverses. Some of these games include FortniteAnimal Crossing, and Roblox. These games and many more present a concept of virtual reality in an augmented superset.

Over the years, several industries are beginning to see reasons to build their applications on the concept of the Metaverse. The government is seeking to hold virtual-physical meetings with leaders from around the world and artists are seeing potential in using the Metaverse to hold concerts too.

What then is the importance of the Metaverse that the crypto world is seeking to adopt? 

This article will extensively discuss all you need to know about Metaverse. We will also discuss it's importance with respect to blockchains and the digital world at large.

But first, what exactly is a Metaverse?

What is a Metaverse?

Simply put, a Metaverse is a concept of creating virtual spaces using a 3D augmented spectrum.

For instance, games that allow one to own lands, build cities, go outside space all operate on the concept of Metaverses. Any concept that presents a realistic virtual world is a Metaverse. This can be seen in plenty of Sci-Fi movies and even in novels.

The word Metaverse was first used in a fiction novel in 1992. The novel – Snow Crash by Neal Stephenson described it as a world outside our world.

Other examples are seen in virtual reality games like the Minecraft. Minecraft presents a unique medium for social interaction and relationships.

Students of the UC Berkeley were able to create a virtual campus on the Minecraft game. The students even conducted a virtual ceremony where each person joined with Minecraft characters.

Another application is the Roblox game. The Roblox game allows developers to create games and receive tokens as incentives. Afterwards, the developers withdraw their tokens outside of the game’s platform.

Furthermore, there is a wide application of Metaverse in the crypto world. There, Metaverses will allow users to own tokens, lands, and assets which can easily be traded while virtual money is converted to real money simultaneously.  

Aside from this, there are other applications of a Metaverse in the crypto world. We’ll discuss these shortly. Before we do, here is what to know about Metaverse basic foundation.

Metaverse Basic Foundation

The basic Metaverse foundation explains the components put together to build a blockchain Metaverse. These components are open standards, the internet, hardware, open programming language, and a decentralized ledger and smart contract.

The Internet

The internet is essential in creating a connection for digital assets. But the internet connection for blockchain Metaverse is highly secured.

Connections between computers on a decentralized network restrict authorized individuals or bodies like the government from gaining access. It only allows users of that network to gain total authority over their decentralized network.

Open Programming Language Standards

Metaverses use programming languages like web XR, javascript, WebAssembly, and HTML. Open standards of the media like 3D audio, images, and texts. It also uses 3D sequences and geometric figures and vectors.

Decentralized Ledger and Smart Contract

Metaverses are incorporated in blockchains, so they exhibit features of blockchain technology. They offer secure and plain transactions as well as public availability and support to the blockchain ecosystem.

Blockchain Metaverse and it's Importance

Many refer to the Metaverse as a replacement for the internet, whereas, it’s in actual sense the successor of the internet. Perhaps, it can be the next trillion-dollar project.

In the crypto world, Metaverses offer new experiences to gamers and creators of NFTs. Even in the decentralized platform, it offers permissionless and transparent transactions at high speed.

NFTs serve a foundational role in a Metaverse as they offer users the complete ownership of their lands. Afterward, one can sell off their virtual properties and exchange their money for real money.

A 259 parcel of virtual land in Sandbox was sold for over $900000 and it’s still the largest to date.

Arthur Madrid says people are easily blown away by the number of money players spend on digital assets. He thinks that making NFTs assets can add a layer to the already existing digital economy.

Mark Zuckerberg even said and I quote, 

"We want to get as many people as possible to be able to experience virtual reality and be able to jump into the Metaverse and to have these social experiences…",

This he said while referring to Horizon - the company’s experimental virtual reality project. Mark Zuckerberg is hoping to explore this using Facebook's oculus headsets.

Here are the main advantages of a Metaverse

Metaverses will allow fans to attend concerts virtually with characters that represent them. In April, Travis Scott helped a convert which had about 1 Million concurrent views. The concert which he held at on a Fortnite with half the attendee using the creative modes. 

While we cannot predict the future of Metaverses in the crypto world, we are certain that they will cause exponential growth in blockchains.

How does a Metaverse Work?

Up till now, the application of Metaverse is not popular among people and only a few projects use them.

Just like decentralized blockchains, Metaverses aren't owned by a single individual. The project is for everyone, and is owned by everyone. So, be sure of secured transactions on the Metaverse.

To own a part of the Metaverse, one has to invest in its architecture, services, and development. 

Since the project is still in its early phase, here is how it works and why it's the perfect successor of the internet.


Metaverse creators have been able to create certain items. These items are virtual assets and can be sold and exchanged for real money. 

Likewise, you can transfer these items from one application to another without interference. Hence, the contents of the Metaverse is not "siloed"

Decentralized Nodes

Currently, there are over a thousand nodes that host the Ethereum network. Hence, the ethereum network is not held by an individual. So, one will not need any permission before carrying out any transaction.

The Ethereum network can do this due to its Metaverse projects as it will allow for permissionless transactions; transparent and quick.

And as you'll expect, the decentralized nodes are of great importance to the blockchain Metaverse. It also offers high-level security through its consensus mechanism. 

To Wrap It Up

Blockchain Metaverse is changing the way we interact in the digital world. It's changing the way we carry out virtual activities by providing more acceptable and realistic features to games and apps.

One common app that is looking to adopt this concept is Facebook. And other apps are looking to work with the project as governments are looking to enhance their modes of operation. Government officials are seeking to meet via virtual-physical platforms provided by Metaverse.

The importance of Metaverse on blockchains cannot be undermined. It allows users to transact easily and is permissionless. It also enables users to accrue virtual assets for themselves and exchange them for real money. To top it all, they can transfer assets from one app to another without any interference.

In a nutshell, the essentiality of the Metaverse cannot be undermined.

Also read Loot: The First On-Chain Community-Driven NFT Platform

Serum: A Blend of Speed, Convenience and Trustlessness

As the next-generation exchange system, Serum is making waves in proving its credibility in crypto-trading and decentralized finance transactions. It provides faster and frictionless orders with its automated order book system.

Serum provides incentives to its users which in turn favors so many developers. Some of these incentives are Serum Token (SRM) and MegaSerum Tokens(MSRM). With these tokens, one can achieve passive crypto income by staking their tokens on Serum. 

Serum allows every member to stake their tokens. It doesn't only allow members with the highest token to stake, it also allows members with small tokens to stake too. 

Seeing that Serum DEX has so much to offer, there's a need to know so much about it. In this article, we'll extensively discuss Serum DEX and its features. Also, we'll discuss the values and how it relates to other blockchains. Enjoy!

What is Serum?

The Serum is a decentralized exchange system built on the Solana ecosystem to provide unmatched low costs and speedy DeFi transactions. It charges as low as 0.0001 cents for transactions. 

The system aims to offer users faster settlement times and zero centralization. 

In offering a non-centralized side of its architecture, it centralizes price fees even without using Oracles services. Hence, we say the Serum system functions without Oracles. Oracle is a centralized service used by Defi protocols to verify, authenticate and query external data then send them to an already closed system.

Because Serum is based on the Solana blockchain, it offers fully decentralized services that are easy, fast, and affordable to use. 

In Serum DEX, users can easily transfer assets amongst different blockchains and even trade stable coins and wrapped coins or even convert coins from one coin to another. For instance, converting Ethereum to FxT. Some of the projects build on Serum DEX are:

Furthermore, users can create customized financial products as they deem fit. 

The Serum uses native Serum tokens(SRM) as its main governing assets and incentive for its ecosystem. With SRM, users can stake, trade, or participate in burn and buy fee incentives for reduced trading costs.

Also, with the SRM, users enjoy a further reduction in Serum-based transactions.

Aside from all of these, Serum aims to enhance frictionless cross-chain contracts in DeFi while traders trade synthetic assets. It provides many synergies with the Solana blockchain serving as its host application.

Solana Blockchain 

As the fast-growing blockchain system, Solana has secured a spot in the top 10 cryptocurrency projects according to the market cap. Being able to carry out fifty thousand transactions in a second(TPS), Solana blockchain has demonstrated to be the quickest blockchain anywhere on the globe. So, Serum building their project on the Solana network will allow for quick fast transactions on the Serum network. 

Solana, with all of its functions, is a layer-1 blockchain. So, to function effectively, Serum functions solely on a layer-1 solution system without layer-2 solutions. It operates solely on a decentralized clock that monitors time-stamps transactions together with an advanced Proof-of-Stake(POS) mechanism. 

In recent times, blockchain developers have been designing decentralized applications using the Solana blockchain. This widely accepted choice from blockchain developers is due to Solana's reputation in providing fast and scalable smart-contract-enabled blockchain. It's this advanced blockchain system that the Serum network is built on. Clearly, Serum is just a project on the Solana ecosystem.

That said, Serum DEX mirrors the cost and speed of the Solana network. With this, it offers a fully decentralized trading arena with easy trading on centralized exchange systems. It also offers inter-operable features that allow users to exchange assets such as Ethereum (ETH), Bitcoins (BTC), SPL-based tokens, and ERC-based Tokens. 

Serum Token (SRM)

A unique thing about the Serum token (SRM) is its means of collecting values. It accrues values via hyperinflation.

SRM accrues values through adoption and utility. Some are:

That said, most SRM have extensive unlocking terms with all sales fees inclusive. Serum achieves this by locking the tokens. SRM are locked cryptographically in a smart contract. It takes about a year or less to unlock a locked token.

The period where you cannot unlock a locked token is its unlocking period. Most SRM have an unlocking period of one year.

In some cases, some SRM take up to 6 years to unlock. This type equates to 1/2190 SRM in a day.

SRM amount to a maximum of 10 Million tokens, creating about 175 million tokens in its circulation. Because of this high number of tokens in circulation, Serum has been able to provide liquidity to their project. However, several token stakeholders have decided to hold on to a large number of their tokens thereby reducing the number of tokens in circulation. 

Moving on, several traders stake SRM to achieve passive crypto income. They also do this by rescuing fees and staking rewards when trading on Serum DEX. 

Howbeit, traders with SRM can still partake in on-chain governance. Traders who do this will vote on updates to specific markets on the project. 

MegaSerum Tokens (MSRM)

A MegaSerum(MSRM) is equivalent to one million SRM. It means you have to have a million SRM as they'll amount to one MSRM.

MegaSerums are rare and there are only 10%. This is so as there are just fewer users that show belief and commitment to the Serum network. It's just those 10% that can lock their SRM with MSRM.

Project Serum Cryptocurrency Ecosystem 

The project Serum, built on the Solana ecosystem, provides usable services to developers and other users from the start of their project to its deployment. On a large scale, this ecosystem provides a suitable platform for non-technical users planning on delving into Decentralized Finance(Defi). This they can do on Serum's user-friendly App(dApp).

That said, in the Serum ecosystem, developers are automatically eligible for grants once they build on this network. With this, projects receive the support and funding to enhance their user adoption and brand awareness. 

A good example of a project like this is the Phantom project. The Phantom project is a Defi(Decentralized finance) and NFT crypto wallet. Another example is Coin98 that offers users smooth running payment gateway services. 

Also, Project Serum provides developers contact points and resources. With that, you can view on-chain codes, clients codes, and repositories. The project also offers tutorials for developers which can be found on the "Developer Resources" on its website.

Finally, the Project Serum allows users to comprehensively overview all Serum's tokens and integration within its ecosystem. And to top it all, the project provides a link to its whitepaper.

Serum and Staking Nodes

Before one becomes a Serum node, one must take at least 10million SRM including a minimum of 1 MSRM. However, at 100 million SRM or 100 MSRM tokens, nodes stop staking tokens. 

Nodes collect several rewards based on their network participation, the aggregate of activity, and performance within the Serum ecosystem. Generally, nodes are in charge of some blockchain operations like cross-chain settlement validation.


Oftentimes, traders can't continue the Serum project and earn passive income via Defi because they can't stake 10 million Serum tokens. This shouldn't be a challenge as there are alternatives to this.

Serum token holders can now stake tokens as regards a node. A node is formed by a leader and consists of members of that network. The node leader doesn't necessarily have the highest tokens. But the leader can be the founder of the node and will receive small fractions of node staking fees.

In a node, anyone or the leader can stake a node on behalf of another member. Still, Serum nodes will offer trading fees and governance rights within its ecosystem. 

However, there're mechanisms to provide an overload of tokens in the ecosystem. As many readers stake their SRM tokens, the system cools down following unstacking tokens. This period, known for just a week. 

Node Rewards

In a node, rewards are distributed through native SRM. However, the nodal leaders receive more proportion of the node than other members. Commonly, the leader receives 15% of the rewards while the 85% is distributed among other members. 

Annually, nodes receive a 2% percentage yield (APY) based on their staked funds. However, this percentage can increase to around 13%. This can only be possible if members of a node increase their performance duties and challenges. Also, nodes get special rewards for special challenges. One of these challenges includes providing collateral for SRM tokens. The aim of this is to prevent funds from burning. 

How to Use Serum

Serum exchange doesn't require that users own an account before a transaction. All you need to transact on Serum DEX is an internet connection, a wallet, and some cryptocurrencies. 

First, if you're carrying out a transaction on Serum, you’ll be needing a Solana wallet. Asides from the Solana wallet, there are other wallets that Serum interacts with.

Some are:

To switch between the wallet, click on the change wallet at the top right corner of the interface. Then pick your desired wallet.

Here is a breakdown of how to use the Serum before we delve into each process extensively.

Create a Solana wallet

Seeing that your cryptocurrency has arrived in your Solana wallet, you can add tokens by clicking on the add token feature on the interface. One may choose to add Serum unwrapped Bitcoin to the Sol.

The next thing to do is to find a Serum-based DEX to connect to this wallet.

Connecting your Wallet to Serum DEX 

Connecting your wallet to Serum DEX shouldn’t be challenging provided you follow these easy steps. Below are simple steps on wallet connection.

The Value of Serum

As of the time of writing this article, Serum values was the 11th most trending cryptocurrency. On the other hand, it was 141st on the coin market cap on that same day.

On the coin market, Serum was $8.10, a market price of $404.8 million, and a 24-hour value of $117.71 million.

To Wrap It Up

Serum DEX offers a platform for developers and other users to trade speedily and conveniently. For developers, it provides contact points and resources. Such that, they can view on-chain codes and attend tutorials. All that Serum offers is because of its conjunction with the Solana network. 

Also Read Solana: Exploring the Blockchain

Mina: The World's Lightest Blockchain

It’s almost impossible for developers to create a protocol with these three important ingredients – security, scalability, and decentralization. These three ingredients, however, exist in ideal cases. Their existence is termed the blockchain trilemma, and this name was given by Vitalik Buterin, the founder of Ethereum.

Since blockchains protocols don’t exist in the real sense but the blockchain trilemma, most blockchains exist as having only two of these three ingredients? That is security and scalability without decentralization or decentralization and security without scalability.

Most blockchains are highly decentralized, but they often face the challenge of overcoming scalability or security.

Bitcoin, for instance, faces a problem of scalability.

However, one blockchain protocol called Mina protocol is promising to solve the problems mentioned above. 

The Mina protocol is a lightweight blockchain that helps to improve the decentralization of codes on the network. Asides from this, the Mina protocol has so many to offer.

In this article, we will be looking at the Mina protocol, its architecture, and the risks associated with the Mina protocol.

Mina Protocol: Architecture and Procedures

Mina protocol is a rebrand from the Coda protocol. It changed its name from Coda protocol to Mina protocol in October 2020.

The Mina protocol is said to be brief, cutting down the numerous requirements for running Dapps effectively. Because Mina Protocol doesn’t require much space, it’s often referred to as the “succinct blockchain”.

Here is a significant problem that the Mina protocol has solved.

Blockchains are developed with high-security measures that protect information locked on the blockchain. These security codes protect transactions on the blockchain too.

Seeing the strong tide of technological advancement, more people have moved to storing and transacting on blockchains.

The sudden influx of users on blockchains has caused a lag in this blockchain technology. This lap is due to the shortening of blockchains sizes due to the high number of users in a blockchain.  

For blockchains like the bitcoin blockchain, larger bandwidth (storage) has been used to accommodate many users on the platform. So, it explains the reason for the large bitcoin blockchain size – 320 GB.

On the other hand, the Mina protocol has a size of 22kb, which is way lower than a bitcoin and other networks. This constant low size of the Mina protocol is attributed to the protocol’s ability to condense its blockchain using zero-knowledge proofs.

Moving on, Mina protocol aims to enhance payment options by advancing its payment system for easy distribution on the platform and the ease of verification of its users. 

On its white paper, you may see this termed as “succinct blockchain”.

Mina Protocol Architecture

A protocol’s architecture will refer to certain rules that the protocol abides by to function. It is these rules that determine the decentralization activity and security efficiency of a blockchain. Just like every other protocol, the Mina protocol has its architecture.

Block Producers

A Mina block producer produces new blocks for the blockchain. In producing new blocks, it validates the current state of the blockchain. 

A Mina block producer aims to provide security and achieve consensus on the blockchain.

On the Mina protocol, blockchain producers are not limited to certain people. Instead, any with the current state of the block can produce a block.

To produce a block ultimately, one must have enough computing power to reduce a blockchain SNARK within the slot time and connect to peers to broadcast the generated block. The developed connection to peers must be within an acceptable time, as the network consensus parameters state.

Stake Delegation

On Mina protocol, it’s possible to delegate funds and undelegated funds. Delegated funds can’t be spent. To undelegate funds, one must re-delegate them to their original account.

The Life Cycle of Payment

Payment is a transaction that transfers value from accounts to accounts with a transaction fee inclusive. The transaction fee is the charge to be paid by the sender to transfer his value to the recipient’s account.

Payment on the Mina protocol passes through various steps before they’re verified. Here are the payment verification steps on the Mina protocol.

Members of the Mina Protocol can create a payment then share it within the network. The Mina network then stamps it with a cryptographic key that validates the transaction from the sender.

The transaction is then sent to the network for processing by peers on the network. On receiving the payment, each peer gets a copy of the transaction in the local transaction pool. The local transaction pool is a memory store that stores all transactions a peer network has processed.

A block producer’s note is picked for a given time slot, with the active block producer choosing an in-flight payment depending on the payment fees. The active block producer then places the transaction fees on a transition block, also a list.

Also, the block producer defines the structure of a transition by generating a SNARK. The producer then transmits this new information for processing by the SNARK workers.

It’s important to note that block producers earn Mina as rewards when they build blocks.

To prove transactions, worker nodes perform SNARK calculations on each transition block.

These proofs emerge as individual proofs and neighboring proofs of payment. In the end, all payments are verified.

By generating proofs, SNARK workers earn currencies from the paid block producers. They then transmit the evidence over the network.

After verifying, the block producer sends out verification to all members of the block. The members then apply the required changes to their accounts before it reflects.

Proof of Stake Mechanism

The Mina protocol proof of stake functions majorly on the Ouroboros protocol. The Ouroboros protocol extends and modifies the Mina protocol blockchain.

Before now, the Ouroboros protocol was an extension of Praos, but now, it is the Ouroboros genesis.

Being a newer extension of Praos, Ouroboros protocol fixes any vulnerability that involves forks long fork attacks.

Scan State

Scan state refers to a data structure that permits transaction SNARKs production to decouple the output from block producers to snark workers. Also, due to the scan state’s data structure, SNARK proof generalization transactions can be completed and parallelized by several snark workers in a competition.  

Furthermore, because block producers don’t need to produce transaction SNARKs, there isn’t a change in the production time of the block. Also, irrespective of the transaction throughput, there is a constant time for block production. 

Scan state is replete with several full-binary trees, with each node present in a tree being worked on by snark workers. Periodically, single proofs from atop a full-binary tree are returned by the scan state. The proof affirms that transactions done at the tree’s base are correct.


Tokens are an avenue for users to issue and create their unique tokens. However, they require users to open a particular token account. 

Mina protocol allows users to mint their tokens which they can send using specialized token accounts. Mina’s command-line interface, also referred to as CLI, is the major way users interact on Mina’s Blockchain with tokens.

CLI offers an interface that encourages the functional creation of a new token account, new tokens, and minting of non-default tokens. Additionally, CLI features advanced daemon and client commands.


Being the lightest blockchain in the world, Mina has a new applications category known as Snapps: Snarkified Applications. 

Similar to Ethereum Dapps, snapps are at a higher level due to their unique and specific properties. These properties,

Typically, snapps can be explained as Snapps = Dapps + Privacy + Off-Chain Data + Scalability. It is important to note that Mina’s snapps are way more efficient than Ethereum Dapps. Mina’s snapps benefit from Mina’s Blockchain scalability potential owing to Mina’s succinct nature.

How Mina Works

The Mina protocol runs on two major components - SNARK and Ouroboros Samasika. It is these two components that give the protocol its uniqueness. 

SNARK, for example, allows the protocol to maintain its small size despite the addition of some blocks to the blockchain. 

SNARK is a type of succinct cryptographic proof, and it validates each block after addition to a blockchain. Through this, it’s easy for nodes to store tiny proofs rather than the entire blockchain. 

On the other hand, the Mina protocol uses a unique Pos mechanism known as the Ouroboros Samasika. The Ouroboros Samasika provides bootstrapping via a genesis block. 

Succinct blockchains carry two significant functions; updating and verification.

In verifying, the succinct blockchain verifies blockchain, verifies consensus, and verifies blocks.

On the other hand, the succinct blockchain updates consensus and chain summary.

Asides from all these, the Mina blockchain also optimizes the storing of transactions. This is done by joining unproven blocks and submitting the process to a parallel prover. All of these it does by using a side-by-side scan. 

Risks Associated With Mina Protocol and Their Complications

More often than not, crashing nodes are due to configuration problems. The problem could be incorrect permission on the private key, incorrect characters, and incorrect peering.

To solve this, you can add your current user to the docker group. You can also add a prefix command, but this is not always recommended.

Keys directory has about 700 permissions, with private keys having 600 key files. All of these commands help to update your keys directory in your home directory.

This clearly indicates the absence of a message for twenty-four hours. That is, you have not received any message from your peers in the last 24 hours.

When writing this article, the current network is 128, including a coin base transaction and other fee transfers.

Often, the transaction was stuck and would indicate pending. Afterwards, the transaction will leave the transaction pool. You may try sending it again.

Payments can be canceled before syncing only if the funds are in the ledger.

To Wrap It Up

Mina protocol has stood the test of time, working efficiently, combining ingredients to allow you to transact easily on a blockchain. When writing this article, the current network is 128, including a coin base transaction and other fee transfers.

Mina protocol has solved lagging problems that arise due to the overcrowdedness of users on a blockchain. It was able to do this while still maintaining the decentralization of nodes.

On Mina protocol, transactions are secured on blockchains, and several blockchains can be added. Anyone can create a block; creating a partnership on Mina protocol is not restricted to a set of people.

Looking at the architecture, Mina Protocol has a bright future in blockchain technology.

Also read: Iron Fish: The Private Cryptocurrency

Arbitrum: Scaling without Compromise

A new technology of blockchain, serving and acting as an optimistic roll-up called Arbitrum, just surfaced in the cryptocurrency world. This system allows Ethereum holders, users, protocols, and participants to participate and settle all transactions on the Ethereum mainnet. This serves as linkup loops to the main Ethereum crypto body. 

Arbitrum, therefore, serves as a Layer 2 cryptocurrency platform. By implication, the security and protection of the Arbitrum interface and network come from Ethereum itself. 

Generally, this makes the transactions scalable, faster, and interoperable, enabling compatibility and bonding of the Ethereum based applications with the Ethereum Cryptocurrency market. 

What is Arbitrum

Arbitrum, based on development, has passed and served as a system that ensured efficiency in the management and marketing of Ethereum amongst other layer 2 solutions. It is achieving several goals through the combination of Virtual machine crypto-architecture, networking design, and incentives. 

It has 4 significant benefits. They include; 


During the regular operation of Arbitrum, decentralized apps (DApps) using Arbitrum only have to navigate the main startup catalog or a chain of startups when they make transactions outside of Arbitrum. This allows ease of expansion and upgrades based on the general demand of the server network, unlike other blockchains. 

Generally, this is an advantage of enabling easy transmission of information from the user network to the server's network. It further lengthens the time and duration of the transactions without issues of connection or 'interface error'. This might arise due to an increase in the level of traffic on the Ethereum mainnet within or beyond the proxy counts. 


Only the validated participants can be granted an entry and exit on the DApps, and only such participants need to know what is in the DApps code and storage margin. 

This system of upgrade to Arbitrum has enabled a user-network secure network, and all that is being published within this cryptocurrency margin are recognition of the DApps state. The users enabled sector such that messaging, recordings, messages, and currencies have end-to-end encryption between the network and the user's interface. 

The DApps creator also has free will to allow the user to see the internal server information. This is based strictly on the user demand, and the Arbitrum network verifying information and disclosure is purely optional.

Trust Guarantee

Arbitrum is unlike many other cryptocurrency channels for trading, storage, and transaction of coins such as state channel, sidechain, blockchain, main wallet, or private chain solution. It guarantees an exact, precise, and accurate execution as long as the validator of a DApp, which is usually the user acts honestly. 

No system upgrade allows liquidation of funds or turndown in the rate of transactions and amount of transactions made using Arbitrum.

Interoperability With Ethereum 

Arbitrum is an interoperable and interchangeable system that allows the open-source Arbitrum compiler to generate Arbitrum-ready code. You can also transfer Ether or any other Ethereum based token back and forth within the Ethereum and Arbitrum network. 

Interoperation scaling is enabled as the Ethereum system now runs as a significant interface in the Ethereum network system. This gives an overall boost to the Ethereum mainnet. Consequently, it reduces the cost of operation and gas fee that comes with the rush in the Ethereum mainnet by network users. 

Arbitrum Deployment on Ethereum 

Arbitrum platform is technically designed and centralized, making it better and more reliable than most blockchains. Proof of work platform by leveraging on general accessibility to the public and a lower costs of user-network leverage, this innovation of Arbitrum supports standard EVM contract deployment allowing standard Solidity smart contracts to be deployed on Arbitrum Chains using existing developer tools; an entire interface network of cryptocurrencies and tokens could be deployed but this deployment tool is set on the Arbitrum roll-up only and not the Ethereum.

Arbitrum uses roll-ups (a setup tool) to record batches of transactions on the Ethereum mainstream. The chain and execution of these transactions are on a scalable sidechain, while leverage is placed on the Ethereum network for security and result.

The major reason for Ethereum deployment on Arbitrum is to achieve better throughput and make transactions on the ethereum blockchain cost-efficient. 

This led to the advanced improvement of Ethereum by the community to make it more scalable and deployed on other scaling-solution channels like Arbitrum.

Arbitrum enhancement in Crypto-market

In recent times, cryptocurrencies have gained popularity in the world's exchange market. Unlike the stock exchange market, the crypto market is almost entirely online, and coins, tokens, and artifacts are being traded by various merchants worldwide. However, Arbitrum has solved significant problems in some of this retrospect. Insecurity and lack of fast servers have posed disturbance in the trading and merchanting of cryptocurrency for years till today. This is one of the many problems the Arbitrum helps in the general overview and boost of the system. 

Arbitrum is faster gaining popularity as it now scales 80% of all hurdles posed on using the Ethereum mainnet. This has not only given Ethereum the boost in its exchange as a cryptocurrency but has also helped to increase the general value of the Ethereum coin. 


So, many discussions have been done on the centralization and tactical approach of the Arbitrum network in helping to scale Ethereum during an increase in the demand for Ethereum on the main site leading to various cases such as an increase in gas fee and a slower network; however certain infrastructure has been put in place to allow transactions on the Arbitrum Scaling Solution, this infrastructure is basically by the creation of Arbitrum Virtual Machines (VMs). 

The Arbitrum Virtual Machines are first-class actors that perform specific functions logged into the Ethereum network, this form a send-receive network which helps to send and receive funds and messages as well as perform calculations and store data offline according to the code program on the network, generally this is a mechanism that helps reduce gas fee either during an increase in traffic on the Ethereum site or a crashing of the site. 

This infrastructure has made the Arbitrum VMs more scalable and private than the conventional way of implementing smart contracts on other scaling solutions such as Polygon and Optimism. 

Arbitrum manages the VMs off-grid the mainnet with minimal activity online to ensure correct execution. When someone creates an Arbitrum VM, they select a set of operatives responsible for executing the VM. The set of operatives are called Managers. They are responsible for the execution of the VM. Arbitrum thereby guarantees the correct and exact execution [even if other selected managers are corrupt]; because of the low on-chain work, Arbitrum VM is made more private. 

Comparison between Arbitrum and Other Layer 2 Solutions 

Arbitrum has posed many advantages to cryptocurrencies, many of these advantages are listed below; 

To Wrap It Up

Arbitrum has, over some time, gained publicity as a network operative system of Ethereum, leveraging over several system setups that have placed it above many layer 2 solutions and serving as an alternative route during network effect on the Ethereum mainnet.

Arbitrum is not just a solution to the problems posed by the Ethereum mainnet. It is a scaling option that has diverted and enhanced the usage and navigation of Ethereum, geometrically boosting the system by almost 100% and enabling many onsite users of the Ethereum.

Cryptocurrency traders and merchants are advised to engage in the Arbitrum network as more than an alternative but a new phase of Ethereum. 

Also read Casper: The Future-Proof Blockchain

Iron Fish: The Private Cryptocurrency

Several blockchains have tried to address several issues that face decentralized transactions but none of them have completely addressed the issue. Only one of these blockchains is close to solving this once and for all. This blockchain is the Iron Fish blockchain.

The Iron Fish blockchain is a layer 1 decentralized blockchain platform that offers top-notch privacy security to users. It helps in overcoming the challenges of creating P2P connections in a node by eliminating any barriers that may be present. Also, it has been able to create connections in any browser and any CLI environment. 

Surprisingly, the Iron Fish project has so many other benefits it offers its users. In this article, we'll be discussing the benefits, networking mechanism as well as unique features of the Iron Fish blockchain. 

What is the Iron Fish Blockchain?

The Iron Fish project is a layer 1 privacy blockchain that offers users strong privacy transactions and wide expansion to the use of cryptocurrency. As a decentralized Proof-of-Work(POW) blockchain, Iron Fish offers users full-private transactions and supports WebRTC. By supporting WebRTC with WebSockets, it reduces the challenge of creating P2P connections. 

The Iron Fish aims to run a full node directly without future iterations in browsers or CLI environments. By doing this, it makes it easy for any person to create a node and join a node. It does so by lowering barriers to entry. 

Like other blockchains, Iron Fish has six ingredients:


The Networking component of the Iron Fish gives a run of basic networking startups, stacks, messages types, and sequences. Networking provides information about Iron Fish gossip protocol implementation.

Iron Fish Blockchain has a networking system that enables it to perform its unique functions as a blockchain. 

These functions enable it to carry out functions like node interaction, layers transportation, and nodal gossiping.

In building a decentralized blockchain system, creators have not successfully addressed the network address translation {NAT}. It is with the NAT that users can effectively communicate without firewalls and routers. However, by creating sharp accessibility with a combination of Web Sockets and WebRTC, the Iron Fish blockchain has completely addressed the NAT issue.

Asides from the combined action of the Web Sockets and WebRTC, Iron Fish uses an array of techniques to ensure that users connect freely irrespective of their browser and CLI environment. In other words, Iron Fish solves the problem of connection interjection due to technical faults.

That said, once a node is created, there has to be another node ready to connect to the former node. The latter node is known as Bootstrap which, once connected, connects the former node to another peer to form a network. Below, we discuss how nodes form a network in the Iron Fish blockchain.

Startup sequence

Before a network is set up, there has to be a node that initiates a connection or startup. Once the node initiates the startup, the following happens:

Peer connections lifestyle

During a connection, a node maintains a complete knowledge of its peers and other peers connected to it. They do this by occasionally checking for changes in the nodal connections. With that already said, let’s discuss the modality of nodal communication.

Nodal messaging

A nodal message is a unique format member of a group sends messages in a node connection. These messages are usually agreed upon and only peers in a network understand them.

There are different types of messaging with different styles of messaging.

Nodal messaging styles


Gossips occur within networks, sending messages from one node to another. Once a node receives gossip, it forwards it to the nearest connected node. The essence of gossip is to propagate changes that occur in a nodal connection.

Direct RPC

This style of messaging helps to send messages to a specifically connected peer and awaits a response. It does this by its Remote Procedure Call {RPC} stream that comprises a request stream and a response stream.

Fire and Forget

The fire and forget style allows users to send messages to connected peers without any confirmation of receipt. This style of messaging is often useful if users need not worry about the recipient receiving the message.

Global RPC

Messages sent here are sent to specific users and other users in the same network. Global RPC resends the message if there are any errors in the message or if the sender doesn’t get a response. However, this style of message favors known peers over unknown peers.


The mining section in the Iron Fish blockchain describes how the blockchains construct new blocks for their users. In constructing new blocks, they do this randomly for the sake of proof of work and the miners' reward calculation.

Mining in the Iron Fish blockchain is defined by rules that guide the creation of blocks and verification of peers in an incoming block. While on the other hand, miners are nodes that add new blocks to the blockchain. We say a new block is added if a miner finds a hash of a blocker header below a target.

To prevent block accumulation, the Iron Fish block adjusts the difficulty of mining by 15 seconds. This is done if observed blocks are coming in faster or slower.

To mine on the Iron Fish blockchain, your node must know global data structures and must be familiar with the two most recent blocks.


The storage section helps users understand the basic structures and models of the Iron Fish. Also, it helps users how this layer is accessible in both browser full nodes and CLI.

In discussing an Iron Fish storage system, we’ll be looking at what the system stores and how the system stores.

What does the system store?


A note is a spendable representation of the payment form. It is quite similar to the UTXO of bitcoin. Nodes are referenced privately and are only referenced publicly on two occasions. The first occasion is when the note is severe as an output for a transaction. The second is when the note is in a hashed form. More importantly, notes are always private.


A nullifier is different from a note and it is unlinkable to a note. A nullifier is a distinct identifier to a note and can only be spent if exposed as part of a transaction.

Once exposed, the nullifier is saved on Iron Fish data structures. These data structures help to keep track of all nodes on the Iron Fish blockchain. And there are two of these data structures

Merkel tree notes

The Merkel tree note as an accumulator data structure presents several elements with a tiny identifier. A Merkel note consists of the following

Merkel nullifiers

The Merkel tree of nullifiers functions like the Merkel tree of notes in that it accumulates too but it accumulates are nullifiers. Although, unlike the Merkel note, it accumulates notes in a series of nullifiers.

Also, the Merkel nullifier is used to track all Merkel notes spent and accompanying notes.

How then does the iron fish store data?

In storing data Iron Fish uses a storage layer that works as a Command Line Interface(CLI) tool and a browser.

Account creation

Just like other blockchain accounts, users can create an account on the iron fish blockchain using a Sapling protocol. To better understand how this and other components are necessary for account creation, going through the account creation layer will do.

All transactions on the Iron Fish blockchain are influenced by the Sapling protocol. This section explains the key components of an account.

Secret key

The secret key is necessary for constructing one's wallet and it's a 32-byte random number.

Spending key

The spending is a direct derivation of the secret key. The spending key is used by users to spend notes associated with accounts. The spending key comes in pairs:

Spending authorization key(ask): This private key in this pair is derived by using the modifier Blake2b and placing hands on a secret key. After this, the key is converted into a scalar for the jubjub curve.

Authorization key(ak): The authorization key is a derivation of the public key by the multiplication of the spending authorization key. 

Nullifier keys

The nullifier keys are derived from the secret keys and are necessary for creating nullifiers and spending a note. The nullifiers' keys are into pairs:

The proof authorization key(NSK): The proof of authorization key is the private component on the pair and it's derived by using the modifier Blake2b and placing hands on a secret key. After this, the key is converted into a scalar for the jubjub curve.

The nullifier deriving key: This key is a derivation of the public key by the multiplication of the spending authorization key. 

View key pair

The view key pair comes in two and are:

Outgoing view key(ovk): This key is responsible for the decryption of outgoing transactions. 

Incoming view keys (ivk): The incoming view key allows your decryption of incoming transactions.

Transaction creation

This layer gives a run-through on the applications of zero-knowledge in the Iron Fish blockchain alongside its transaction in conjunction with the Sapling method. Also, it gives a run-through on how to validate and balance existing transactions.

Verification and consensus

This final section simplifies the rules on accepting new block transactions. Oftentimes, this is the layer several users visit the most.

Before now, we discussed how nodes are created but didn't discuss why they're created that way. Nodes are created following the blockchain consensus rules.

The blockchain consensus is a verification layer that sets rules on how nodes accept blocks. This consensus layer is what the Iron Fish blockchain operates on. 

Moving on, the Iron Fish block will be accepted if it has a valid header and body. At high levels, verifying headers will confirm the amount of work behind a header. To confirm the amount of work behind a header, the system checks for a hash numerically lower than the target. 

Moving on, the Iron Fish block will be accepted if it has a valid header and body. At high levels, verifying headers will confirm the amount of work behind a header. To confirm the amount of work behind a header, the system checks for a hash numerically lower than the target. 

Validating a block header

To validate a block header, a receiving block header checks all of the following correctly. 

Validating a block body

To validate a block body, the system validates all transactions in the block. This is done by checking the validity of each transaction.

Iron Fish Gossip Protocol

The Iron Fish gossip protocol broadcasts new transactions and blocks to every peer in a network. To do this, nodes in a network verify incoming transactions, then send them to other peers. After broadcasting the transactions, the nodes validate the incoming blocks before signaling the node’s transaction ledger. The essence of a peer broadcast is that every peer receives messages quickly.

Iron Fish Zero-Knowledge Proof

A Zero-Knowledge proof refers to cryptographic techniques that verify and proof statements without exposing their underlying data. For the Iron Fish blockchain, it can do this by using zk-SNARKs. Essentially, zk-SNARKs shields Iron Fish users’ identities and balances. Because of this, you successfully hide your identity and transaction details.

Unlike bitcoins and ethereum, Iron Fish blockchain transactions are not in the permanent ledger. Instead of this, Iron Fish users can transact without it revealing their balance or their identity. Experts even say the Iron Fish blockchain creates platforms for developers to carry out their work. Most especially, this platform will favor developers who have no foreknowledge of cryptocurrency.

The Iron Fish network uses the sapling protocol created by Zcash to verify transactions on its blockchain. In verifying transactions, they protect their clients and offer better services. 

Not only are they important to developers, but they're also important to cryptographers and enthusiasts in the field. For cryptographers, they can create Rust Coding coinage for their work and other systems. 

To Wrap It Up

The Iron Fish blockchain offers several benefits to its users. One of these is the ease of accessibility into networks for node creation. Another one is the advanced level of its decentralized privacy transactions. 

So, don't be caught in the traps of archaic systems that disallow you from using effective software. It's with effective software that developers develop interesting and mind-blowing software for blockchains as well as platforms related to blockchains. Ensure to update yourself on all of these and enjoy advanced technological solutions. 

Also read: Digital Identification on the Blockchain with Microsoft’s ION 

Golem: A Decentralized Cloud Computing Network

This article will discuss the Golem Network and how it operates intensively.


Blockchain technology has exposed the world to a realm of beautiful creation that we would have thought to be impossible years ago. From a technology built mainly for peer-to-peer transactions in 2009 (bitcoin blockchain), the blockchain has become the technology of choice for many applications such as healthcare, gaming, real-estate, etc. 

Blockchain technology not only allows for creating wealth or enforcing a contract without a third party but also for building supercomputers. The first decentralized supercomputer to be built on the Ethereum network using blockchain technology is the Golem Network.

History of the Golem Network

Golem was co-founded by Piotr Janiuk, Aleksandra Skrzpczak, Julian Zawistowski and Andrzej Regulski in 2016 in Switzerland. After launch, Golem sold 82% of its supply and raised about 820,000 Eth, which amounted to about 8.6 million dollars at that time.

What is Golem Network?

Golem is a decentralized application (dApp) built on the Ethereum network. It is a decentralized supercomputer that connects computers in a peer-to-peer network, thus creating a global market where application developers and users can rent resources (idle computational power) of other user's machines. Users can rent their hardware and be paid in Golem tokens. Those who need computational resources to complete a more complicated task such as CGI rendering, artificial intelligence, etc., can get it and pay for it through the Golem marketplace. The beauty of the Golem Network is that anyone can access it, and its constituents are the combined power of users' machines from personal computers to the whole data centers.

The computational resources supplied by centralized cloud service providers such as Amazon, Google, etc., have limitations such as hard-coded provisioning operations, closed networks, and proprietary payment systems. Golem provided a decentralized marketplace where users can share the computational resources that other users require to carry out their tasks to address these limitations. The users who share their resources to the Golem Network get rewarded in Golem tokens (the native token of Golem).  

Golem functions as the backbone of a decentralized marketplace focused on computing power. Anyone who wants to create and deploy software to the Golem Network can publish the software to the application registry. Developers can use the application registry and transaction framework to extend and customize the payment mechanism, which gives rise to a unique way of monetizing software.

Application Registry and Transaction Framework

The Golem Network has various features that make it unique, but the application registry and transaction framework are essential. The application registry and transaction framework empower developers and create a secure, transparent, and efficient platform. 

What is an Application Registry?

The application registry is simply a register of the basic information of applications and their developers. A smart contract built on the Ethereum blockchain allows developers to integrate their applications into the Golem Network. Anyone can confirm the authenticity of an application by checking the registry; the registry holds information about a trusted application and a non-trusted application. Developers can publish their integrated applications and help users locate the required tools for their needs.

 What is a Transaction Framework?

Picture Credit: Golem Whitepaper

The transactional framework allows developers and providers to decide the payment mechanism and set the price they want for their applications. The transaction mechanism is entered into the application registry and must use an open-source or Ethereum Virtual Machine (EVM) as a deterministic environment. The mechanism also uses GNT (the native token of the Golem Network) and receives community approval. Examples of transaction frameworks are off-chain payment channels, custom receipts, Nano payments, per-unit use of software, payout schemes, etc.

The Working Principle of Golem

Golem provides a platform where providers, software developers, and others share computing power and network resources. The transaction initiates when a requestor (a user who accesses Golem Network to ask for resources) demands computational resources from a provider (a user who sells computing power) through the task template. For instance, instead of paying a centralized cloud-based platform such as Google Cloud for artificial intelligence, which is a computer-intensive process and slow on some occasions, the user can request computation power from a provider in the Golem's peer-to-peer network.

Steps involved in carrying out a task through the Golem Network include the following:

The Architecture of the Task Template and Reputation System

The Golem Network requires the task template (which has the complete computational logic) to execute the request made by the requestor. The computational logic needed to execute the request are:

  1. The source code to be run
  2. Splitting of the task into subtasks and sending it into different nodes
  3. Verification of final results

As soon as a task is completed, Golem immediately grades the requestors and providers that use its marketplace through the reputation system. The network detects malicious nodes and provides an evaluation metric for scoring tasks correctly.

The reputation system monitors the task of the requestors to ensure that it does not contain errors when the provider computes it and monitors the timeline of the requestor's payments.

The reputation system grades a provider because they have computed their task correctly, and the task passed a verification check upon return.

Golem's Use-case

Golem cryptocurrency (GNT) use-case is in the Golem Network. The value of GNT is attached to its use in the Golem Network because it is the coin of choice. Requestors need a GNT token to rent computational resources from a provider who computes the computations. Hence, the requestor will always have to buy GNT to access the Golem Network.


The Golem Network was created to solve the problems associated with renting computing power from centralized cloud-based providers. It achieved this by allowing users to supply and lease providers' computational resources using a peer-to-peer approach. The network rewards providers of the hardware the requestor rent with GNT. Golem prides itself as the first open-sourced decentralized supercomputer powered by the Ethereum blockchain.

Also read Augur: Your Global, No-Limit Betting Platform

Digital Identification on the Blockchain with Microsoft's ION

This article describes the concept of digital identification on the blockchain and the working mechanism of Microsoft's ION.


From time immemorial, identification has been an integral part of the human race signified by many things such as tribal marks, body piercings, etc. In short, all humans have an identity, but how we identify ourselves has continually changed over the years.

Humans identify themselves through identification cards, which is important to confirm our identity relating to people or organizations. For instance, anyone opening a bank account, checking into a hotel, traveling out of a country, or even applying for a driver's license needs a form of identification card that is personal to the owner.

The advent of technology has reshaped how humans can identify themselves, especially online (digital) identification. As the way to represent identity changed gradually from analog to digital (internet), many people lost the liberty to manage their identity credentials online. This has prompted the belief in some people that blockchain could be the answer to the identity problem created by the internet since it is purely decentralized.

The identification on a blockchain will limit the control of people's identity to their own hands instead of a third party. Hence, they have complete control over their data.

This article goes beyond identity on the blockchain to exploring in detail the Microsoft ION identity solution. It defines identity on the blockchain, discusses how ION works and the various architectures and system features that make it unique from other identity networks on the blockchain. 

What is Digital Identification in Blockchain?

Digital identification in the blockchain uses blockchain principles to create an identity card and provide management in such a way that gives control to the owner rather than a third party. Since the first blockchain implementation in bitcoin, it has been useful in various applications, including identity, healthcare, supply chain, etc.

Thanks to Bitcoin, a decade ago, that aroused the curiosity of developers, cryptographers, and distributed systems engineers to solve the problems associated with centralized identity systems. Today, cryptographers and other distributed system players are deploying identity solutions on various blockchains, viz; Bitcoin's ION, Cardano's Atala Prism, Ethereum's Element, and so on.

The distributed system community, through groups like Internet Identity Workshop IIW, World Wide Web Consortium W3-C, Rebooting Web of Trust RWoT, are exploring the ideas and technical processes of the traditional identity system. Hence, proposing decentralized identities to achieve a fully distributed and decentralized identity. The purpose behind DID, a foundational technical component of decentralized digital identity, is to give ownership and control to individuals.

While many solutions are proffered, the common denominator is finding a scalable, user-owned unique identifier to a set of cryptographic keys and routing endpoints. So many solutions thus far are not focused on achieving a scalable and decentralized network that doesn't require utility tokens, consensus mechanisms, and trusted validator nodes.

In response to the above-stated issue, Microsoft proposed and launched Identity Overlay Network, also known as ION. Before exploring the solutions, architectures, and killer features of Microsoft's ION, it is crucial to discuss in-depth more about identity.

Why Digital Identification on Blockchain?

Digital identification on the blockchain could solve some of the problems associated with our present identification process. These problems are:

Models of Digital Identity Management

What is Self-Sovereign Identity?

Before defining Self-Sovereign Identity, we should understand that the user-centric model cannot give autonomy, which users need. So, the SSI was introduced to provide sovereignty and put total control in the hands of users.

Self-Sovereign Identity (SSI) is a digital identity that people can store on their devices without relying on an external party. The concept of SSI is purely decentralized and gives the power to create and manage an individual's identity to the owner instead of a third party.

The Working Priciple of Digital Identity on the Blockchain

The digital identity in a blockchain is decentralized, and it operates based on the following components:

Advantages of Digital Identification in Blockchain

Blockchain identification has numerous advantages, which are elaborated on below.

What is ION?

The idea behind ION is to achieve a scalable, resilient, user-owned decentralized identity system where users do not need utility tokens, consensus, and trusted validated nodes. By implication, users own and operate their nodes. ION is a layer 2, public, permissionless, decentralized DID overlay network that runs atop the Bitcoin blockchain and leverages a deterministic DPKI protocol called Sidetree.  

Before fully deploying ION in early March, Microsoft started exploring Sidetree between 2017 and 2018. During this period, they determined if it was worth investing in. Upon realization, the team worked in collaboration with SecureKeyMattr, Consensys, Transmute, GeminiBitpayCasa among others to codify Sidetree into a formal specification with the decentralized identity foundation.

ION Architecture

Microsoft ION Architecture

Microsoft's ION comprises a collection of microservices, including a Bitcoin Core, IPFS, and MongoDB (for local data persistence). Simply put, the majority of ION's code comprises Sidetree protocol. As a Sidetree based DID network, it combines Sidetree logic module; a chain-specific read/write adapter, a content-addressable storage protocol (e.g., IPFS), MongoDB, and an existing layer one protocol. 

The content-addressable storage protocol like IPFS helps replicate data between nodes. The above combine to form the Sidetree protocol that enables the creation of layer 2 DID networks that run atop existing blockchains (layer 1) at thousands, or even tens of thousands, of PKI operations per second. The Sidetree requires no additional consensus like several other layer 2 solutions. It simply relies on a decentralized chronological ordering of operations provided by the underlying blockchain. Unlike monetary units and asset tokens, IDs are not intended to be exchanged and traded. To achieve greater scalability without relying on additional layer 2 consensus schemes, trusted validator lists, or special protocol tokens. Also, the Sidetree is designed to allow all nodes of the network to arrive at the same Decentralized Public Key Infrastructure (DPKI) state. This allows an identifier based solely on applying deterministic protocol rules to chronologically ordered batches of operations anchored on the blockchain, which ION nodes replicate and store via IPFS.

ION Working Mechanism

Microsoft ION working


ION leverages a single on-chain transaction, blockchain-agnostic Sidetree protocol to anchor tens of thousands of DID/DPKI operations on a Bitcoin chain. The ION node processes and encodes transactions with a hash used to fetch, store, and replicate the hash-associated DID operation batches via IPFS. Without requiring an additional consensus, the nodes process the hash associated DID operation batches following a DIF's set of deterministic rules, enabling them to independently arrive at the correct DPKI state for IDs in the system. The nodes are designed to fetch, process, and assemble DID states in parallel, and also, the aggregate capacity of nodes can run at tens of thousands of operations per second.

How to Run ION and Create DIDs

To run ION, you need to meet certain hardware and software requirements. 

Hardware requirement; 

Software requirement

Make sure you have running on your machine, Windows, or Linux operating system. Upon meeting the listed prerequisites, follow the below to run ION and create DIDs; 


Though digital identification in the blockchain is a field that is still new, it gives an assurance of more tight and user-centered control of one's data than centralized databases. It reduces the risk of getting people's information to hackers who use it for different nefarious activities. Microsoft proffered a scalable, resilient, user-owned identity management system that doesn't require utility tokens, trusted validator nodes, and additional consensus mechanism through ION, a layer two solution to decentralized identity.

Also read DeFi Lending: A Primer

Solana: Exploring the Blockchain


Are you a developer looking for the next best blockchain to host your project? are you a cryptocurrency trader that wants to try other Blockchains? Or are you a trader or investor in cryptocurrency but the gas fee is not friendly to you? whatever your interest is or wherever your interest lies, this article will present the Solana Blockchain, one of the most exciting Blockchain that answers most of your questions.

What Is Solana Blockchain?

Solana is a decentralized Blockchain that is fast, secure, scalable. It is a platform where anyone can build a decentralized app. It is essential to know that the Solana blockchain can run around 50,000 transactions per second (TPS) and have a block time of approximately 40ms. Astonishing, isn't it?
In 2017, Anatoly Yakovenco created the Solana blockchain. He and his team created the blockchain to make transactions fully trustless and solve scalability problems.
Yakovenco did not just build Solana from the blues; he had a lot of experience while working with Dropbox as a software engineer and lastly Qualcomm before making the Solana blockchain.
Today, top organizations such as Qualcomm, Microsoft, Apple, and Google support the project from their wealth of experience.

How Does Solana Work?

You may be wondering about how Solana could achieve scalability with running 50,000 transactions in a second. If you have been wondering about it, wonder no more as the reason for this stunning performance is tied to the working principle of Solana.

To ensure all these work together for good, Solana developed eight important innovations by which it operates. The eight innovations are discussed below.

Proof Of History

Solana uses a proof of stake consensus that works perfectly with proof of history to determine the transaction time in the protocol.

The proof of history is a record that verifies that an event happened within a specific time frame and keeps track of it. This approach assigns a timestamp for any transaction carried out on the blockchain. It also disallows any involvement either by bots or miners in deciding the order in which blockchain records its transactions. It is different from other blockchains in that it does not wait for other validators to confirm a transaction before it is accepted. Solana allows all validators on its platform to confirm transactions immediately without waiting for another. It can achieve this by making use of SHA-256 - it enables hashing a verifiable delay function sequentially (VDF).

Tower PBFT

Byzantine fault tolerance is an agreement that tolerates failure and defends the computing system against corrupt data and malicious attacks. As a result, all the nodes in the system get the same authentic data all the time.
The tower's practical byzantine fault tolerance ensures that all transactions in the system are verified with the lowest processing power possible. It can do this because it uses the proof of history as a clock - a record of the timestamp of past transactions - before achieving consensus. Hence, Solana becomes faster and more efficient than other blockchains.


It is a block propagation protocol that makes transmission to the blockchain node easy.

Gulf Stream

Validators on Solana can now execute transactions faster and reduce confirmation time. All thanks to the gulf stream. The transactions are always at the forefront of the system for execution. 

Gulfstream is the mempool-less transaction platform. We must understand what a mempool is to grasp what the Gulfstream entails fully.

What Is A Mempool?

A mempool contains all transactions that are submitted on the blockchain but has not been processed. What these mean is that a mempool is a transaction awaiting confirmation on the blockchain. With this understanding now, we can safely say a Gulfstream is a platform that does not allow delay in a transaction before it's been processed. Interesting right? We will delve into how the gulf stream works and how it helps the Solana network to make faster transactions.

How Does Gulf Stream Work?

In Solana, there is a concept of leader which is the role of a validator when it is appending entries to the ledger. Validators can easily execute a transaction before the set time, reducing the transaction time. This is possible because all validators are aware of the order of upcoming leaders, so they send the transactions to the expected leader before the set time so the leader can process the transactions.

A block occurs on the Solana platform approximately every 800 milliseconds, and it becomes more time-consuming to unfold as they increase. In a worst-case scenario, a fully confirmed block-hashes contains about 32 blocks. A client signs a transaction that points to a recent block-hash that the network has confirmed. The signed transaction is sent to the validators which immediately forward it to the most senior leader in the network. The client knows that the network confirms a transaction and that the block-hash has an expiry time, so the client signs a transaction knowing that it can execute or fail. Immediately the network is ahead of the rollback point, the referenced block-hash expires, and the client knows that the transactions become invalid, never to be executed on the chain.

Sea Level

The sea level is a parallel smart contract runtime. The sea level helps Solana protocol scale across GPUs and SSDs, enabling efficient runtime. In addition, the sea level gives all Solana transactions the ability to run concurrently on the blockchain.


The pipeline mechanism is a processing unit that enables all transactions to be quickly validated, optimized and recurrent across all the nodes in the Solana network. The pipeline follows the outline below to carry out its function.


Cloudbreak allows the Solana network to achieve a high level of scalability. Before defining Cloudbreak, let's understand the Solana blockchain scalability.

Cloudbreak And How It Achieves Scalability

Scalability can be achieved without sharding, but more is needed than scaling computations alone because the memory used to monitor accounts can easily be overwhelmed, affecting the size and speed of the network. The network used to achieve scalability must take advantage of the account's concurrent read and write access. RAM and SSDs can be used to achieve scalability without sharding, but they come with a huge disadvantage. To solve the challenges posed by using RAM or SSDs for scalability purposes, Solana designed software that allows 100% utilization without involving the hardware. It does not use a traditional database to address scalability but uses different combinations to provide solutions. The mechanisms are highlighted and discussed below.

How Solana Achieves Scalability

a) Memory-mapped file leverage: a file that has its byte mapped in a process's address (virtual) space. The kernel may or may not store the cached memory in the RAM. Although the RAM does not limit the amount of physical memory, the size of the disk can. The disk performance determines the reads and writes.

b) Faster sequential transactions: Sequential transactions are faster than random operations across all the virtual memory stacks.

The accounts data structure of faster sequential operations are:

i) The RAM stores all index of accounts and fork.
ii) About 4MB of memory-mapped files stores all the account.
iii) A memory map stores an account from a proposed fork.
Random distribution of maps across numerous SSDs.
iv) Semantics (copy-on-write) are used.
v) Writes are assigned randomly to a memory map for the same fork.
vi) After each writes, the index is updated.

Solana gets the privilege to write and scale concurrent transactions sequentially and horizontally across many SSDs because the account updates are copy-on-write and assigned to a random SSD. It is not only the writes that are horizontally scaled but read. Read achieves this because forks states updates occur across numerous SSDs.

c) Garbage collections: As accounts get updated, and forks are finalized after rollback, every old account is collected as garbage and freed from the memory.

d) State updates for fork: horizontally scaled sequential reads that happen across all SSDs help with computing Merkle root of the state updates for a fork.

With Cloud break, Solana achieves scalability without sharding and also scales much more than computations. You can look at it as an optimal data structure for concurrent reads and writes across the network.


As the name implies, the archiver in the Solana network is the node for storing data from validators. Therefore, many checks go on in the background to ensure that only valid data are stored on the archivers.

The Solana Ecosystem

Solana has been attracting many projects that build its tech stack due to its fantastic advantage in the current cryptocurrency world. Today there are more than 200 projects built on the Solana protocol. Some of the projects are highlighted below.

The Solana ecosystem is growing very fast, with about two hundred and eighteen (218) projects built. The project cuts across various categories such as Defi, AMM, Stablecoins, Governance, Dex, and NFTs.

Sol Token

SOL is the native token that is used on the Solana protocol. The Sol token has two crucial use cases, which are:

  1.  It is used to cater for transaction fees and smart contract operations on the protocol.
  2. You can also stake the Sol token to earn a profit on the Solana protocol.

To stake sol token, you should follow the steps below:

  1. Get a wallet such as SolFlare and Exodus that supports Sol staking 
  2. Create your staking account by following the instructions on the wallet.
  3. Follow the instructions on the wallet to choose a validator .
  4. Delegate your stake to your chosen validator.

According to coingecko, Sol has a current circulating supply of 272 million out of its maximum store of 488 million. It had an all-time high of $149.91 in September 2021 and currently trades at a value of $142 per Sol token. The current market cap of Sol is around $41,499,887,443.


The Solana blockchain achieves the fastest cryptocurrency transaction per second compared to Ethereum which takes about 15 seconds per block, and bitcoin of 10 minutes per block. Recently, platforms such as OKEx, MXC, and the Solana foundation became partners to launch two new funds that will increase the growth of projects on the Solana ecosystem. If the ecosystem continues this way, it might just become the leading blockchain soon.

Also, read on Stable Coins.

Cryptocurrency Wallet: A Complete Guide

Money is anything that has value and can serve as a source of exchange. Centuries back, the people gave cowries value, and it became money before the introduction of fiat currency. In the 21st century, many people decided to use a digital asset called cryptocurrency as a form of exchange. Cryptocurrency has gained much popularity since its inception in 2009. However, many people still need guidance on how to use it. It is easy to start using cryptocurrency, though you have to get a cryptocurrency wallet. The cryptocurrency wallet works precisely like the wallet in our traditional financial system. In the conventional financial system, you would need a place to store your fiat to preserve it from damage or protect it from theft. Whatever you use to store your fiat is a wallet. The same principle applies to cryptocurrency wallets.

Cryptocurrency Wallet 

A Cryptocurrency wallet is a digital container that stores public and private keys for cryptocurrency transactions. Because cryptocurrency is a digital asset, it cannot be stored in a traditional wallet. A cryptocurrency wallet is a device used to send and receive cryptocurrency. There are thousands of cryptocurrencies, and each has its unique supported wallet. No two cryptocurrency wallets are the same. For example, a bitcoin wallet can only receive or send bitcoin and supported coins, while an Ethereum wallet can only receive and send Ethereum and Ethereum standard tokens called ERC-20. Similarly, there are also wallets for securing Tron-based coins called TRC-20 wallets. 

To accommodate the wide range of crypto assets there comes the need for a multi-assets, standard wallet infrastructure. So far there are multi-assets and standard wallets, namely; Trust Wallet, Ledger, BC Vault, SafePal, MetaMask, and many others. Using this class of wallets is as simple as the others. All you need to do is to select and copy the right wallet address of the asset. 

Working Of Cryptocurrency Wallets

You can liken a cryptocurrency wallet to your traditional bank account number. Ordinarily, when you want to operate a bank account, the bank gives you an account number specific for you. You can share the account number with people. There is no risk attached to sharing your account number with friends, family, and even your enemies. Similarly, a cryptocurrency wallet is similar to an account number, but this time, it comes in randomly generated alphanumeric characters. 

Once you download a wallet, you would get a unique code generated automatically. This code consists of numbers and alphabets. To get funds into your wallet, you can share the unique code attached to your wallet, and you would receive any funds sent into the wallet.

Types Of Cryptocurrency Wallets

There are generally two basic types of cryptocurrency wallets: hardware and software. However, sometimes they are classified into five main types of wallets: mobile wallets, web or online wallets, desktop wallets, hardware wallets, and paper wallets.

Mobile Wallets

Mobile wallets are mobile apps or  DApps which you can download from the Google play store. Similar to other apps, it can be used anywhere with an internet connection. It is specifically used for securing your private and public keys.  

Web Wallets

A web or online wallet is different from a mobile wallet because it runs on the cloud. It could be accessed from any device that is connected to the internet anywhere. Though it is easy and convenient to use, you must be aware that a third party controls your private keys, and it is easier to be hacked and stolen.

For example, a centralized exchange like Hotbit and Binance stores your coins on their server. Any problem with the exchange, such as hacking, can make you lose all your funds. It is advisable to use a web wallet with caution.

Desktop Wallets

As the name implies, desktop wallets are wallets on your computers. Desktop wallets are more secure than mobile wallets or web wallets because they can only be accessed on the computer you downloaded them on. The disadvantage is that your funds can be gone once your computer is misplaced or stolen, or if there is a virus on it.

Hardware Wallets

Hardware wallets are the most secure wallets available. The hardware wallet stores your private and public key on a hardware device offline. You can transfer funds to another person by connecting your device to the internet, after which you disconnect. It is almost impossible for a hacker to infiltrate your wallet because you enter your private key into the device and not the internet. So hardware ensures you keep your fund offline to avoid the danger of losing it.

Paper Wallets

Paper wallets are not mostly talked about, though it is safe and easy to use. A paper wallet refers to a printout of your private and public keys on paper. You can receive crypto to your paper wallet by sending the public address you printed on your paper to the sender. You can also send your crypto to someone else from your paper wallet by entering the keys into a web wallet or by scanning the QR code on the paper. The process of sending crypto from your paper wallet is called sweeping.

Paper wallets are highly secured because they are kept offline and not online; hence no hacker or person can get them online. The only way to get your fund is if another person has access to your paper, thus keys.

Software And Hardware Wallets

Each of the wallets has its advantages and disadvantages. An average cryptocurrency user cares about software wallets without knowing that hackers could strike anytime. On the other hand, a hardware wallet, since it's hardware that houses a user's private keys, had no access to the internet except when it was connected to transfer and swap funds. 

Primarily, software wallets users depend on third parties for fund security because when it is not your keys, it's not your coin. However, it is more accessible and easy to use than hardware wallets.

Cryptocurrency Wallets And Security

Cryptocurrency is a volatile asset and should be kept safe. Please note that securing your private key is the goal of securing your crypto. No matter the wallet you use, your crypto is unsecured once your private key is compromised. Nevertheless, the type of wallet you use is vital as the risk attached to each differs. 

Recall that we discussed the five types of wallets above. The most secure wallets are wallets that are free from the internet. These wallets are paper and hardware wallets. Though wallets that use the internet consistently, like web and mobile wallets, are less secure, you can always ensure you keep them secured by outsmarting hackers.

Hackers can access your funds through malware, phishing, and more. Those who use centralized exchanges and have a web address are at greater risk, as the exchange can make away with their funds. 

Below are some of the things you can do to protect your funds from loss:

    1. Try as much as possible to avoid using centralized exchanges. If you must use it, ensure you keep what you can afford to lose on it. Also, ensure you always log in to the site from secured internet access. Do not use public Wifi to access the site, and ensure you log in to the correct website alone.

    2. Always ensure your device software is up to date to get the latest security support. Old software is an easy target for hackers, and it can easily be compromised.

    3. Consider having a wallet that allows multiple signatures. Multiple signatures mean that you cannot send funds with only one device. You must authenticate transactions using more than one device. Multiple signatures ensure that your funds are secured even if you misplace your device, as the person who has the device cannot use it without the other devices.

    4. Always backup your wallet regularly to regain access to your wallet if there is a crash to your system or hard drive. 

    5. Use complex passwords and authenticators to protect sending your funds to unknown people.

The Best Cryptocurrency Wallet

The best cryptocurrency depends on what you decide. After reading my thoughts above, you should have a better understanding of the cryptocurrency wallets. There are numerous cryptocurrency wallets. We will look into some of them which has good ratings and acceptance.

BC Vault

BC vault is the wallet of choice when we are talking about security. While other cryptocurrency wallets use BIP39 or BIP44 libraries to generate seeds that could be compromised during a leak, BC vault uses a gyro sensor (RNG) to generate separate keys for each user, making them more anonymous. RNG makes your wallet more secure compared to the BIP model. 

There are five layers of security associated with the BC vault. These layers are global password, global pin, the device itself or a backup, wallet password, and wallet pin. BC vault gives you complete access to your keys, and that gives you the power to have your bank in your hand. 

BC vault has support for many coins ranging from bitcoin to ERC-20 tokens. The price is affordable when compared to the security that comes with the wallet.

Ledger Nano S Wallet

Ledger Nano S wallet is a hardware wallet that is highly secured. Once you buy a ledger nano wallet, you get a physical device to store your cryptocurrencies offline. To send crypto to someone, you need to connect the wallet to your laptop, enter your pin and send.


Exodus is a free cryptocurrency wallet that supports multiple coins. It is user-friendly and straightforward to use. You can also use this wallet to buy and sell cryptocurrency, and your private keys are secured as no other person has information about it except you.

Bread Wallet

Bread wallet is another free, open-source wallet made to store your cryptocurrency. There is a direct connection between the bread wallet and the bitcoin blockchain. One of the disadvantages of the bread wallet is that it does not support two-factor authentication.

Trust Wallet

Trust wallet is a multi-coin-supported free wallet on mobile. It includes a decentralized application section (dApps). It is easy to use for trading on decentralized platforms such as PancakeSwap, and it is highly secured. You would get a seed phrase after registering on Trust Wallet, which must be kept safe. The seed phrase is the only way you can access your account if you lose or change your phone. You can set a password for all your transactions in the wallet. The password ensures all funds sent from your wallet are with your permission.

Metamask Wallet

Metamask wallet is a crypto wallet that supports multiple coins. It is free and has a dApps section. You would have a seed phrase after registering, which must be kept safe. The seed phrase is the only way you can access your account if you ever lose or change your phone.


Jaxx is a wallet that supports multiple coins. It is accessible by various platforms, with an android device, iOS device, Windows, Linux, Google, and more. It is highly secured, user-friendly, and has excellent user support.


In conclusion, a cryptocurrency wallet is a software or hardware that keeps you in control of your digital funds. Many people are waiting to devour unsuspecting cryptocurrency user's funds. Therefore it is essential that you choose a secure Crypto wallet to be safe. If you have read this article and understood it, you should be more armed with information that would save you from scammers and hackers. In closing, I would like to reemphasize that your top priority is a hardware wallet because it allows you to control your keys, Unlike software wallets that are managed mainly by third parties. For instance, your funds in a centralized exchange, though sometimes trusted, are not in your care, so you should be while using them.

Also read on Ethereum Hard Forks.